Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus
نویسندگان
چکیده
The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.
منابع مشابه
Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats.
Associative learning can enable cues from the environment to stimulate feeding in the absence of physiological hunger. How learned cues are integrated with the homeostatic regulatory system is unknown. Here we examined whether the underlying mechanism involves the hypothalamic orexigenic neuropeptide regulators orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH). We used a Pavlovian...
متن کاملAppetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.
The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovi...
متن کاملOrexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking.
The orexin/hypocretin system is involved in several addiction-related behaviors. In the present experiments, we examined the involvement of orexin in heroin reinforcement and relapse by administering the orexin 1 receptor antagonist SB-334867 prior to heroin self-administration or prior to cue-induced or heroin-induced reinstatement of extinguished heroin seeking in male Sprague Dawley rats. SB...
متن کاملAdministration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat
Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and...
متن کاملMedial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats.
Motivation plays an important role in the control of food intake. A cue that acquires motivational properties through pairings with food consumption when an animal is hungry can override satiety and promote eating in sated rats. This phenomenon of conditioned potentiation of feeding is mediated by connections between the forebrain and the lateral hypothalamic area (LHA). In a recent study using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015